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Neural Network Model Selection Using
Asymptotic Jackknife Estimator and
Cross-Validation Method

1

Yong Liu
Department of Physics and
Institute for Brain and Neural Systems
Box 1843, Brown University
Providence, RI, 02912
e-mail: yong@cns.brown.edu

Abstract

Two theorems and a lemma are presented about the use of jackknife es-
timator and the cross-validation method for model selection. Theorem 1
gives the asymptotic form for the jackknife estimator. Combined with the
model selection criterion, this asymptotic form can be used to obtain the
fit of 2 model. The model selection criterion we used is the negative of the
average predictive likehood, the choice of which is based on the idea of the
cross-validation method. Lemma 1 provides a formula for further explo-
ration of the asymptotics of the model selection criterion. Theorem 2 gives
an asymptotic form of the model selection criterion for the regression case,
when the parameters optimization criterion has a penalty term. Theorem
2 also proves the asymptotic equivalence of Moody’s model selection cri-
terion (Moody, 1992) and the cross-validation method, when the distance
measure between response y and regression function takes the form of a
squared difference.
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Selecting a model for a specified problem is the key to generalization based on the
training data set. In the context of neural network, this corresponds to selecting
an architecture. There has been a substantial amount of work in model selection
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(Lindley, 1968; Mallows, 1973; Akaike, 1973; Stone, 1977; Atkinson, 1978, Schwarla,
1978; Zellner, 1984; MacKay, 1991; Moody, 1992; etc.). In Moody’s paper (Moody,
1992), the author generalized Akaike Information Criterion (AIC) {Akaike, 1973)
in the regression case and introduced the term effective number of parameters. It
is thus of great interest to see what the link between this criterion and the cross-
validation method (Stone, 1974) is and what we can gain from it, given the fact
that AIC is asymptotically equivalent to the cross-validation method (Stone, 1877).

In the method of cross-validation (Stone, 1974), a data set, which has a data point
deleted from the original training data set, is used to estimate the parameters of a
model by optimizing a parameters optimization criterion. The optimal parameters
thus obtained are called the jackknife estimator (Miller, 1974). Then the predictive
likelihood of the deleted data point is calculated, based on the estimated parame-
ters. This is repeated for each data point in the original training data set. The fit
of the model, or the model selection criterion, is chosen as the negative of the aver-
age of these predictive likelihoods. However, the computational cost of estimating
paramccers for different data point deletion is expensive. In section 2, we obtained
an asymptotic formula (theorem 1) for the jackknife estimator based on optimizing
a paramcicrs optimization criterion with one data point deleted from the training
data set. This somewhat relieves the computational cost mentioned above. This
asymptotic formula can be used to obtain the model selection criterion by plugging
it into the criterion. Furthermore, in section 3, we obtained the asymptotic form
of the mod.] selection criterion for the general case (Lemma 1) and for the special
case when the parameters optimization criterion has a penalty term (theorem 2).
We also proved the equivalence of Moody's model selection criterion (Moody, 1992)
and the cross-validation method (theorem 2). Only sketchy proofs are given when
these theorems and lemma are introduced. The detail of the proofs are given in
section 4.

2 APPROXIMATE JACKKNIFE ESTIMATOR

Let the parameters optimization criterion, with dataset w = {(zi,%:), ¢ =1, ..., n}
and parameters 8, be C,(8), and let w_; denote the data set with ith data point

deleted from w. If we denote 8 and 8_, as the optimal parameters for criterion C., (6)
and C,_;(6), respectively, Vj as the derivative with respect to § and superscript t

as transpose, we have the following theorem about the relationship between 6 and
8_;.

Theorem 1 If the criterion function C,(6) is an infinite-order differentiable func-

tion and its derivatives are bounded around 6. The estimator é_‘ {also called jack-
knife estimator (Miller, 1974)) can be approzimated as

0 — 6= —(VeViC.(6) — VoV5Ci(6)) 1V oCi(6) (1)
in which C;(6) = C.(6) - C“_i(e).

Proof. Use the Taylor expansion of equation V¢C,_.(f_;) = 0 around . Ignore
terms higher than the second order.




Ezample 1: Using the generalized mazimum likelihood method from Bavesian
analysis! (Berger, 1985), if #(8) is the prior on the parameters and the observations
are mutually independent, for which the distribution is modeled as ylz ~ f(viz,9),
the parameters optimization criterion is

Cul®) =togl J] flwlz.,0)x(®) )= Y logf(wiz.,8) + logn(6). (2)
(z.v.)€w {zvy))€w

Thus Ci(6) = logf{y:|=zi,8). If we ignore the influence of the deleted data point in
the denominator of equation 1, we have

b — 6~ —(VeViC,(8)) ' Velogf{y iz, 6). (3)

Ezample 2 In the special case of example 1, with noninformative prior z(8) = 1,
the criterion is the ordinary log-likelihood function, thus

6i-b6x~—[ Y VeVilogf(ylz; 8) 17 Velogf(vilzi,6). (4)
(ziy)€Ew

3 CROSS-VALIDATION METHOD AND MODEL
SELECTION CRITERION

Hereafter we use the negative of the average predictive likelihood, or,
1 3 A
Ta() === 3 logf(nlzi6-:) (5)

(h.y-)G“

as the model selection criterion, in which n is the size of the training data set w,
m € M denotes parametric probability models f(y|z,8) and Af is the set of all the
models in consideration. It is well known that Tn{w) is an unbiased estimator of

#(60, 8(-)), the risk of using the model m and estimator 6, when the true parameters
are 8p and the training data set is w {Stone, 1974; Efron and Gong, 1983; etc.), i.e.,

r60.60) = E{Tm(@)}
E{-logf(ylz,6(w})}
B{-p ¥ logf(yle6)) ) (6)

(2,.91)€Ewn

1

t

I

in which wn = {(z;,¥), 7 = 1, ... k} is the test data se!, 8(.) is an implicit
function of the training data set w and it is the estimator we decide to use after
we have observed the training data set w. The expectation above is taken over the
randomness of w, z, y and w,. The optimal model will be the one that minimizes
this criterion. This procedure of using 6_; and 7;,(w) to obtain an estimation of risk
is often called the cross-validation method {Stone, 1974; Efron and Gong, 1983).

Remark: After we have obtained @ for a model, we can use equation 1 to calculate

8..; for each i, and put the resulting 6_; into equation 5 to get the fit of the model,
thus we will be able to compare different models m € M.

1S¢trictly speaking, it i= a method to find the posterior mode.




Lemma 1 If the probability model f(y|z,8), as a function of 6, is differentiable up

to infinite order and its derivatives are bounded around 8. The approzimalion lo
the model selection crilerion, equalion 5, can be written as

Ta@)m -2 Y beflulend - Y Vileg/(ulzn)@-i-0) (1)

(zay)Ew {zv.y:)€w

Proof. Igoring the terms higher than the second order of the Taylor expansion of
log f(y; lz;,6-:) around 8 will yield the result.

E=amyple ® (continued): Using equation 4, we 1ave, for the model selection criterion,

1 .
Tm(w) = - Z log f(vilz:,0) —
(®3,y:)Ew
1 . X
= > Vilogf(wilzi, )47 Velogf(uilz., 6). (8)
(zi,yi)Ew

in which 4 = ¥, . e, VoVilogf(y;lz;,8). If the model f(ylz,6) is the true

one, the second term is asymptotically equal to p, the number of parameters in the
model. So the model selection criterion is

— log-likelihood + number of para:neters of the model.
This is the well known Akaike’s Information Criterion (AIC) (Akaike, 1973).

Ezample I{continued): Consider the probability model

(v12,6) = Bexp(~ 55 (v m(2)) ©)

in which 3 is a normalization factor, £(y, 7s(z)) is a distance measure between y and
regression function ng(z). £(-) as function of 8 is assumed differentiable. Denoting?
UG, w)= Z(z‘,'y')w £(vi, ne(z:)) — 20%logn(B|1), we have the following theorem,

Theorem 2 For the model specified in equalion 9 and the parameters optimization
criterion specified in equation 2 (ezample 1), under regular condition, the unbiased
estimator of

1
By Y Em(z)) (10)
{ziyi)€wa
asymptotically equals to
1
- > Emng(z)) +
(ziyi)€w
1 5 -
= YV mae) M e VU, M w)} T Vel (umg(2)). (1)
(zo.p:)Ew

*For example, x(8]A) = Np(0,02 /), this corresponds to
UB, 2 w) = Z E(yiimo(zi)) + A7 + const(A,a?).

(=54 )Ew




For the case when £(y,ns(z)) = (v~ ne(2))?, we get, for the asymptotic equivalency
of the equation 11,

R 2
£(0,w) + o1 x
n 2

3 ;_v;ng(é,u){v,v;u(é, /\,w)}‘l;—VgnS(é,w) (12)
1 W

(1.,14,)&0 !

in which w = {{(zi, %), i = 1, ..., n} is the training dala set, wn = {(z\, 1), 1 =
1, ..., k} is the test data set, and £{0,w) = % z(z;.y.)&w E(y, ns(z)).

Proof. This result comes directly from theorem 1 and lemma 1. Some asymptotic
technique has to be used.

Remark: The result in equation 12 was first proposed by Moody (Moody, 1992).
The effective number of parameters formulated in his paper corresponds to the
summation in equation 12. Since the result in this theorem comes directly from
the asymptotics of the cross-validation method and the jackknife estimator, it gives
the equivalency proof between Moody’s model selection criterion and the cross-
validation method. The detailed proof of this theorem, presented in section 4, is
in spirit the same as the one presented in Stone’s paper about the proof of the
asymptotic equivalence of AIC and the cross-validation method (Stone, 1977).

4 DETAILED PROOF OF LEMMAS AND THEOREMS

In order to prove theorem 1, lemma 1 and theorem 2, we will present three auxiliary
lemmas first.

Lemma 2 For random variable sequence z, and y,, if lim,_ oz, = = and
limn oo yn = 2, then z, and y. are asymptotically equivalent.

Proof. This comes from the definition of asymptotic equivalence. Because asymp-
totically the two random variable will behave the same as random variable z.

Lemma 3 Consider the summation Y, h{zi,%:)9(2i,2). If E(h(z,y)lz,2) is a
constant c independent of z, y, z, then the summation is asymptotically equivalent

tocy, g(zi, 2).

Proof. According to the theorem of large number,

Jim =3 bz we(zs) = E(h(z)(z,2)

it

E(E(h(z,)l2, 2)(z, 2)) = cE(g(z, 2))

which is the same as the limit of £ 3~ g(z;, z). Using lemma 2, we get the result of
this lemma.

Lemma 4 If n4(-) and g(0,-) are differentiable up to the second order, and the
model y = n5(z) + € with € ~ N'(0,0%) is the true model, the second derivative with




respect to 6 of
n
UG, \w) =D (3 - no(z.))* + 9(6,2)
i=1
evaluated at the minimum of U, i.e., 6, is asymptotically independent of random

varisble {y;,: = 1,...,n}.

Proof. Explicit calculation of the second derivative of U« with respect to 8, evaluated
at 8, gives

Ve V5 L((G Aw)= 2ZV9T)9(z,) ong(z) - 22 i — 15(24))Vang(zi)
=1

+ VeVaQ(B, A)
As n approaches infinite, the effect of the second term in U vanishes, 8 approach
the mean squared error estimator with infinite amount of data points, or the true
parameters 8 of the model (consistency of MSE estimator (Jennrich, 1969)), E(y -

n4(z)) approaches E(y—1s,(z)) which is 0. According to lemma 2 and lemma 3, the
second term of this second derivative vanishes asymptotically. So as n approaches

infinite, the second derivative of I/ with respect to 8, evaluated ot 6, approaches
n
VeVil(6o), A w) =2 Vems,(2:)Vom0,(2:) + Ve Vg(f0, A)

=1

which is independent of {y;, ¢ = 1, ..., n}. According to lemma 2, the result of this
lemma is readily obtained.

Now we give the detailed proof of theorem 1, lemma 1 and theorem 2.

Proof of Theorem 1. The jackknife estimator 6_; satisfies, V4 _‘(9_,) = 0.
The Taylor expansion of the left side of this equation around § gives

VoCu-(8) + Ve ViCu_(6)(6-. — ) + O(18-: - 61%) =

According to the definition of 6 and é_i, their difference is thus a small quantity.
Also because of the boundness of the derivatives, we can ignore higher order terms
in the Taylor expansion and get the approximation

6_i~ 6 —(VeViC,_.(6))"'VeC._.(6)
Since 6 satisfies V4C,(8) = 0, we can rewrite this equation and obtain equation 1.
Proof of Lemma 1. The Taylor expansion of logf(y,lz.',é_‘-) around 6 is
logf(ui|z:,6_5) = logf(uil=:, 6) + Vilogf(wlz:, 6)(6-: — 6) + O(16-: — 6}7)

Putting this into equation 5 and ignoring higher order terms for the same argument
as that presented in the proof of theorem 1, we readily get equation 7.

Proof of Theorem 2. Up to an additive constant dependent only on A and o?,
the optimization criterion, or equation 2, can be rewritten as

C.(8) = ‘525”(9’ A\ w) (13)




Now putting equation 9 and 13 intc equation 3, we get,

6i =8 ~{VoVil(6,2,w)} ™ Vol (1, m5(.)) (14)
Putting equation 14 into equation 7, we get, for the model selection criterion,
1 1
Tmw) == Y =&, n(z)) +
n 20
(zuyi)€w
1 1 - B
= D 5o VeE(wmi){VeVil(8, X w)} T VeE (v, ns(=.)) (15)
(zuyi)ew

Kecali the discussion associated with equation 6 and now

Bl-; 3 lefylen0)}=B Y chemumlz)) ()
(2;9;)€wn (z;5¥;)Ewn
after some simple algebra, we can obtain the unbiased estimator of equation 10.
The result is equation 15 multiplied by 202, or equation 11. Thus we prove the first
part of the theorem.
Now consider the case when
E(yyme(2)) = (y — ne(2))? (17)

The second term of equation 11 now becornes

1 - -
= Y 4l - )PVl Va6, A w)}  Vemg(z) (1)
(zivi)€Ew
As n approaches infinite, 8 approach the true parameters 6o, Vgnz(z.) approaches

Vens,(z.) and E((y — n;(z)))? asymptotically equals to 0. Using lemma 4 and
lemma 3, we get, for the asymptotic equivalency of equation 18,

%0’2 Z ZVéf)a‘(z,){ng;IJ(é,/‘\,w)}'!ZVQﬂé(Z;‘) (]9)
(zuys)€w
If we use notation £(,w) = 1 X (zaynyew £ (Wi m6(2:)), with £(y, ns(z)) of the form
specified in equation 17, we can get,
8
By,-
Combining this with equation 19 and equation 11, we can readily obtain equation 12.

VgnS(G,w) = —-2V5T]g(zi) (20)

5 SUMMARY

In this paper, we used asymptotics to obtain the jackknife estimator, which can
be used to get the fit of a model by plugging it into the model selection criterion.
Based on the idea of the cross-validation method, we used the negative of the
average predicative likelihood as the model selection criterion. We also obtained
the asymptotic form of the model selection criterion and proved that when the
parameters optimization criterion is the mean squared error plus a penalty term,
this asymptotic form is the same as the form presented by (Moody, 1992). This
also served to prove the asymptotic equivalence of this criterion to the method of
cross-validation.
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